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SUMMARY OF DOSE-RESPONSE MODELING FOR DEVELOPMENTAL
TOXICITY STUDIES
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h Developmental toxicity studies are an important area in the field of toxicology.
Endpoints measured on fetuses include weight and indicators of death and malformation.
Binary indicator measures are typically summed over the litter and a discrete distribution
is assumed to model the number of adversely affected fetuses. Additionally, there is notice-
able variation in the litter responses within dose groups that should be taken into account
when modeling. Finally, the dose-response pattern in these studies exhibits a threshold
effect. The threshold dose-response model is the default model for non-carcinogenic risk
assessment, according to the USEPA, and is encouraged by the agency for the use in the
risk assessment process. Two statistical models are proposed to estimate dose-response pat-
tern of data from the developmental toxicity study: the threshold model and the spline
model. The models were applied to two data sets. The advantages and disadvantages of
these models, potential other models, and future research possibilities will be summa-
rized.
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INTRODUCTION

Developmental toxicity studies involve the investigation of the
responses of fetal litters to maternal exposure to a potentially toxic agent,
which while it may cause negative effects, is considered to be a non-car-
cinogen for humans. The U.S. Environmental Protection Agency
(USEPA) is the primary federal protection agency that uses the results of
these studies to develop guidelines for safe levels of human exposure to
these toxic agents, which can manifest themselves naturally in the air, but
also in common man-made products and structures that humans are
exposed to in the home, workplace, and the general public. Therefore,
USEPA works in collaboration with other regulatory agencies such as the
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Food and Drug Administration (FDA) and Occupational Safety and
Health Administration (OSHA) to establish guidelines. Additionally, one
or more of the most recent USEPA guidelines for areas of risk assessment
associated with developmental toxicity, may be combined with (or may
supersede) the USEPA developmental toxicity guidelines when exposure
is under suspicion of resulting in additional toxicity not accounted for in
the developmental guidelines (USEPA, 1986; 1992;1996; 1998; 2005).

In the developmental toxicity study, each impregnated animal is ran-
domly assigned to a dose group corresponding to an exposure level of the
toxic agent under study. The agent is usually administered orally to the
animals during fetal development. Endpoints are then measured and
recorded on both the animals and their fetal litters. A dose-response rela-
tionship that relates agent dose level to these endpoints is assumed to
exist. Some method for determining tolerable level of exposure is used.
This should primarily involve estimating the dose-response pattern. At
the conclusion of the risk assessment process when a dose-response rela-
tionship has been estimated, the results are then extrapolated to deter-
mine safe exposure levels of the toxic agent in humans during fetal devel-
opment (USEPA, 1991). USEPA considers statistical modeling to be an
important step in the risk assessment process (Ryan, 2000).

The major endpoints that are measured on fetuses are deaths, struc-
tural malformations, growth aberrations, and functional deficiencies.
Also, endpoints relating to fetal weight and length are measured and
modeled using some continuous distribution. Data relating to endpoints
such as indicators of death and malformation are categorical and these
are the endpoints that we investigate in this paper. An endpoint of death
or malformation is categorized as an ‘adverse event’, with death super-
seding malformation for a given fetus. Since each litter is a natural clus-
ter, individual litter measures are typically accumulated into a sum or
average and that quantity is seen as a data value to represent the entire lit-
ter, e.g., number of deaths or malformations in the litter, or average litter
weight. Thus, the study sample size equates to the total number of litters.
Even after the grouping, the sample size is still adequately large enough
for the study to have appreciable power and for the estimates to be mean-
ingful. This is not always the case as data can be left as individual-level and
modeled accordingly. Typically, individual-level data is used in cases of
jointly modeling bivariate outcomes, such as fetal weight and malforma-
tion (Catalano and Ryan, 1992). 

Developmental toxicity studies typically involve investigation of envi-
ronmentally unsafe agents, which, when exposed to an unacceptable
level, results in non-carcinogenic toxic effects. Since carcinogenic risk
assessment studies are restricted to use of the linear dose-response model,
i.e., the linear-no-threshold (LNT) model, as the default model (USEPA,
2005), the developmental toxicity study is not tied down by such limita-
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tions. In general, the default model in the assessment of non-carcino-
genic risk is the threshold dose-response model (USEPA, 1991). In the
context of the typical single-agent and endpoint dose-response study, the
threshold is defined as the maximum dose level at which the toxic response
equates to the background control level response. Threshold is assumed
to exist for developmentally toxic agents due to biological ability of
organism to defend itself against tolerable level of toxic threat. 

Although the USEPA inherently considers threshold to be the default
for studies assessing non-carcinogenic risk, they do not currently employ
pure threshold modeling techniques in assessing risk, i.e., they do not
obtain estimates based on the pure threshold model. Instead, they use
two approaches: (1) the no-observed-adverse-effects-level (NOAEL)
approach and (2) benchmark dosing. The NOAEL approach simply iden-
tifies, among the dose groups under study, the highest experimental dose
group which is not statistically significantly different from the control
level in terms of response. In this way, the threshold could be assumed to
exist between the NOAEL and the next lower dose level from the
NOAEL. The NOAEL approach does not use a parametric model, how-
ever, the benchmark dose approach does. Introduced by Crump (1984),
the benchmark dose is the lower confidence limit of a dose level, esti-
mated by a parametric model, which yields an acceptable level of excess
risk (above control level risk). In both cases of NOAEL and benchmark
dosing, a safety factor is applied to the final dose and this is determined
as the acceptable level of exposure for the human population.

The most obvious advantage of using benchmark dosing over
NOAEL is that benchmark dosing presumes a dose-response relation-
ship, and hence one can obtain estimates of response as well as of the
benchmark dose itself. The assumed model is highly data-dependent,
i.e., the proposed model should accurately reflect the pattern of the
data. This is true of any parametric model, including the threshold
model. Another advantage is that, being a parametric model and neces-
sitating estimation of parameters, the benchmark dosing approach takes
into account the response variation within each dose group, also an
important factor in estimating risk. Although benchmark dosing esti-
mates a tolerance level of sorts, it still does not directly estimate the
threshold, not an easy undertaking. The advantage of the threshold
model is that it directly estimates the point of change in the direction of
the responses in the dose-response curve. 

Figure 1 is a typical threshold dose-response model. It represents the
expected threshold dose-response curve for effects that increase with
increasing levels of toxic exposure, such as incidence of death or malfor-
mation. This is similar to the set of threshold dose-response models
described by Cox (1987), who examined several data sets extracted from
general toxicology studies involving insects and animals. While the exper-
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imental units were directly exposed animals and insects, the outcome of
interest was mortality rate, resulting in a dose-response pattern similar to
Figure 1. Also, he used likelihood-based approaches to derive estimates,
as we do in this paper. 

The beta-binomial distribution was first proposed by Williams (1975)
to model the number of adverse fetal responses. It has the desirable qual-
ity of having a parameter, the intralitter correlation, to account for litter
effects. Chen and Kodell (1989) first used the beta-binomial in the con-
text of dose-response modeling by fitting beta-binomial with a monoton-
ic dose-response model to a developmental toxicity data set. Hunt and
Bowman (2004) fit a hormetic model to that same data set, with beta-
binomial distribution. A limitation of the beta-binomial approach to
dose-response modeling is that the correlation parameter is modeled sep-
arately from the dose-response parameters linked to the parameter equat-
ing to response. Hunt and Rai (2003) introduced a desirable alternative
to the beta-binomial. They assumed a binomial distribution for the litter
responses conditional on litter response variation being from a normal
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FIGURE 1. Threshold dose-response model; response increases with dose above threshold.



distribution. The advantage is that the parameter for response variation
is part of the dose-response model, thereby facilitating estimation. 

Hunt and Rai (2003) modeled response variation as being uniform
across dose groups, primarily to limit the nuisance parameters to be able
to compare bias in estimating threshold between their model and the
beta-binomial. Kupper et al. (1986) simulated monotonic dose-response
models with the beta-binomial distribution and found that assuming a
single correlation parameter can lead to estimation bias if the underlying
model is one of multiple correlation across dose groups. However, they
used very limited number of dose groups (three) and this alone could
contribute to the bias. Hunt and Rai (2008) added multiple variation
parameters to their model to test this assumption with more dose groups
(five, more typical of what is tested in these studies) and, while finding
bias in the single-variation model, also found that the bias was still very
low for cases where there was relative closeness in the variation across
dose groups.

Li and Hunt (2004) introduced a regression spline approach which
counters the threshold approach by having the ability to model several
directional-changing dose-response patterns, including the threshold
model itself. Similar to Hunt and Rai (2003), they assumed uniform
response variation. As Hunt and Rai (2008) illustrated that the multiple-
variation model was significant over the single-variation model for their
investigated data set and their simulations showed that the single-varia-
tion model can lead to bias, we use the multiple-variation model here. We
describe the models in the Methods section. In the Results section, we
compare and contrast the threshold and spline modeling approaches to
data sets from two developmental toxicity studies. The Discussion con-
cludes the paper by summarizing the comparative merits of the proposed
models and discussing the potential for future work.

MATERIALS AND METHODS

Environmental Agents

We investigated the applicability of our model to data extracted from
two developmental toxicity studies. The first study involved the investiga-
tion of the plasticizing agent diethylhexyl phthalate (DEHP), which is a
potential hepatic carcinogen for rodents (Doull et al., 1999). The second
study investigated animal exposure to the organic solvent diethylene gly-
col dimethyl ether (DYME). Both agents are in the class of agents that are
suspected developmental toxicants for humans (USEPA, 1991). 

Endpoints

For both studies, upon animal sacrifice, dams were evaluated for sev-
eral endpoints, including the number of implantation sites and the fetal
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status of each site. Fetal status is categorized by resorbed, dead, or live
fetus. Live fetuses were further investigated for body weight and structur-
al, visceral, and skeletal abnormalities. For the purposes of our analysis,
with each animal being a unit, the fetal litter of an animal was grouped
together with a fetal resorption, death, or abnormality counting as an
adverse event and any other outcome as a non-adverse event.

Animal Studies

In the first study, 131 timed-pregnant CD-1 mice were randomly allo-
cated to be exposed to one of five levels (0.0%, 0.025%, 0.05%, 0.10%,
and 0.15%) of DEHP in their feed on gestational days 0 to 17 (Tyl et al.,
1983). In the second study, 111 timed-pregnant CD-1 mice were allocated
to be orally administered one of five levels of DYME (0, 62.5, 125, 250, or
500 mg/kg/day) on gestational days 6 to 15 (Price et al., 1987). For both
studies, animals were sacrificed at day 17 for evaluation of all dams and
their fetuses. Summarized results of both studies is given in Table 1A
(DEHP study) and Table 1B (DYME study).

From Table 1A, the results of the DEHP study, it can be seen that the
average proportion of responses changes dramatically in the low-to-inter-
mediate dose range (0-91 mg/kg/day). There is sharp decrease in
response from the control level (about 19%) to the response at the sec-
ond dose level 44 mg/kg/day (about 12%), followed by the expected
increase thereafter; this pattern seems to imply that there could indeed
be a threshold dose level for this study. For Table 1B, the DYME study, the
pattern isn’t quite as conclusive. However, the response at the second and

TTAABBLLEE  11AA.. Summary of data by dose level from the DEHP study 

Level of DEHP Number of Average
(%diet) dams litter size –P ± SE Range of P

0 30 13.2 0.188 ± 0.206 0-0.625
0.025 26 12.3 0.121 ± 0.099 0-0.0375
0.05 26 12.3 0.253 ± 0.183 0-0.643
0.10 24 11.5 0.723 ± 0.313 0.143-1.000
0.15 25 12.3 0.982 ± 0.078 0.615-1.000

TTAABBLLEE  11BB.. Summary of data by dose level from the DYME study 

Level of DYME Number of Average 
(mg/kg/day) dams litter size –P ± *SE Range of P

0 21 14.1 0.059 ± 0.070 0-0.025
62.5 20 12.1 0.095 ± 0.096 0-0.333

125 24 13.0 0.110 ± 0.093 0-0.308
250 23 13.0 0.339 ± 0.258 0-0.846
500 23 12.4 0.973 ± 0.082 0.615-1.000



third dose levels 62.5 and 125 mg/kg/day (9.5 and 11%, respectively)
remain relatively close to response at the control level (about 6%).
Additionally, the SE estimates indicate extreme overlap in the responses
at the three lowest dose levels.

As noted in the Endpoints section, the outcome to be modeled is the
number of adversely affected fetuses in each fetal litter. For a given litter,
let represent this number. Subsequently, let n be the total number of fetal
implants, which equates to litter size for the purposes of our analysis.
Then the response in each litter is represented by the proportion of
adversely affected fetuses, i.e., P = X/n. Since we are dealing with discrete
binomial endpoint, a logistic link function for the dose-response model is
applicable. Also, the dose-response function must be piecewise to account
for the threshold dose. Additionally, as litters are expected to have
response variability, overdispersion should be a factor in the model.

The Threshold Dose-Response Model

Define P(d) to be the probability of toxic response at dose level d.
Here, P(d) is the probability of adverse litter effects. Because the data
here is discrete and binary, the logistic link function is used (McCullagh
and Nelder, 1983), hence the threshold model with multiple response
variation is given by:

logit[P(di)] = θ0 + θ1(di – τ) × I(di > t) + σiZ , (1)

i = 1, . . . , g

where θθ = (θ0, θ1, τ, σ1, . . . , σg) is the parameter vector, with τ being the
threshold dose level, σ1

2 is the random response variation for in the ith
dose group di and I is the indicator function for the dose being higher
than the threshold. 

The Spline Approach

Li and Hunt (2004) introduced an approach that uses linear B-splines
to replace the regular covariates in the standard dose-response function,
but still incorporates the variation parameter as first introduced by Hunt
and Rai (2003). The regression spline approach includes an interior knot
which can be interpreted as a changepoint, but not necessarily the thresh-
old, in the direction of the dose-response pattern. It has the desirable
aspect of being able to model several dose-response patterns that could
occur in the data, including the pure threshold model. One could include
more knots or assume higher degree splines (quadratic, cubic), but these
assumptions necessitate the addition of more parameters, thereby requir-
ing a sufficient amount of data to still have desirable study power.

D. L. Hunt, S. N. Rai, C.-S. Li

358



The general form of the polynomial regression B-spline function is
given by the following equation:

s(d; θθ, εε = Σ
m+k

j =1
θjBj(d; εε), (2)

where m is called the polynomial order (one more than the degree) and
k is the total number of interior knots, i.e., εε = (ε1, . . . , εk)′; the set {Bi(d;
εε): j = 1, . . . , m + k} is the set of B-splines of order m (degree m – 1) con-
structed recursively starting with a set of order 1 B-splines, where θθ =
(θ1, . . . , θm+k)′ is the set of B-spline coefficients. This theory is described
in de Boor (2001).

Li and Hunt (2004) use the general function given by equation (3) by
setting m=2 (for degree 1 polynomial, or linear) and k=1 interior knot.
Since we assume the multiple-variation model of Hunt and Rai (2008) to
be the default model, Li and Hunt’s model is altered appropriately to
allow for multiple response variation to make adequate comparison.
Hence, the general form of the new regression B-spline function is given
by the following:

logit[P(di)] = Σ
3

j=1
θjBj(di ; ε) + σiZ , (3)

where all parameters are as described previously in equations (1) and (2).

Nested Models

From de Boor (2001), the spline component of equation (2) can be
re-expressed in the following alternate form:

s(d; θθ, ε) = θ1 + θ2d + θ3(d – ε)+, (4)

known as the truncated power basis form. From equation (4), if θ2 = 0,
then it becomes:

s1(d; θθ, ε) = θ1 + θ3(d – ε)+, (5)

which is equivalent to the linear predictor of the threshold model given
by equation (1). That is, with s1 corresponding to some appropriate trans-
formation of the data, such as the logit, θ1 is the background response
occurring from control dose level d = 0 to d = ε. Here, in equation (5), the
interior knot ε actually equates to threshold. Hence, the threshold model
is a subset of the spline model.
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RESULTS

DEHP study

The results (estimates and SEs) from fitting models (1) and (3) to the
DEHP data are given in Table 2. For the threshold model, the estimate of
τ is about 0.038% DEHP (Table 2A), between the first two experimental
dose levels 0.025 and 0.05%. Partial t-testing based on the SE estimate
confirms this location as well. This result agrees with the NOAEL. The
results do indicate that there is strong evidence for the existence of a
threshold dose, indicating that at the very least, a pure threshold model
would be applicable. The LRT for threshold significance results in p-
value= 0.0001, giving firm support to the existence of a threshold dose
level. The LRT results for the test of multiple-variation resulted in a p-
value=0.001, indicative of differing degrees of response variation across
dose groups. For the spline model, the estimate of the interior knot ε is
about 0.036% (Table 2B). Partial t-testing based on the SE estimate con-
firms this location as well. The LRT results for testing the significance of
the spline model (above the threshold model) yields a p-value of 0.012.
Hence, there is reason to believe that the spline model is the more appro-

TTAABBLLEE  22AA.. Estimates from fitting threshold model to DEHP data.

Parameter Estimates ± SE

β0 –2.037 ± 0.170
β1 60.949 ± 6.895
τ 0.038 ± 0.006
σ1 1.219 ± 0.220
σ2 0.402 ± 0.310*
σ3 0.959 ± 0.276
σ4 1.851 ± 0.348
σ5 1.100 ± 0.339

*: not statistically significant based on partial t-testing.

TTAABBLLEE  22BB.. Estimates from fitting spline model to DEHP data.

Parameter Estimates ± SE

θ1 –2.006 ± 0.352
θ2 –2.108 ± 0.277
θ3 5.519 ± 0.831
ε 0.036 ± 0.006
σ1 1.426 ± 0.266
σ2 0.009 ± 0.823*
σ3 0.783 ± 0.223
σ4 2.554 ± 0.770
σ5 1.947 ± 0.472

*: not statistically significant based on partial t-testing.
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priate model for this data. Figure 2 is the estimated dose-response curve
of both models fit to the DEHP data.

The observed pattern of the data in Figure 2 suggests a decreasing
dose-response relationship at the lowest dose groups, then expected
increase thereafter. Noticeably, from Table 1A, the background response
is high at around 19%; then first dose group above control has lower
response rate of roughly 12%, with monotonically increasing response
after this dose group. This could be due to an unduly high background
rate, but the results suggest that at the least, a threshold dose level does
exist. The spline model fits a decreasing dose-response function below
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FIGURE 2. Estimated dose-response curves to DEHP data (circles); solid line is the predicted thresh-
old curve; dashed line is the predicted spline curve.
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the interior knot estimated to be at 0.036%, then increasing function
above, indicating threshold level to exist somewhere above the estimated
knot, which in that sense agrees with the threshold model; but based on
the estimated background response rate of the spline model (which is
slightly above the rate estimated by the threshold model), the threshold
estimate of the spline model, 0.041%, is somewhat above that of the one
from the threshold model. Above threshold, the two models closely over-
lap in terms of response estimates. 

DYME study

The results (estimates and SEs) from fitting models (1) and (3) to the
DYME data are given in Table 3. The threshold model estimate is 154.5
mg/kg/day (Table 3A), between the 3rd and 4th dose levels 125 and 250
mg/kg/day. Partial t-tests indicates estimate is between these levels with
95% confidence. The threshold result also agrees with the NOAEL. The
LRT for threshold significance results in p-value= 0.001, indicating that
threshold dose level may exist for this data set. The LRT results for the

TTAABBLLEE  33AA.. Estimates from fitting threshold model to DYME data.

Parameter Estimates ± SE

β0 –2.641 ± 0.195
β1 0.022 ± 0.006
τ 154.5 ± 41.3
σ1 0.309 ± 0.599*
σ2 0.687 ± 0.384*
σ3 0.820 ± 0.308
σ4 1.158 ± 0.263
σ5 1.855 ± 0.702

*: not statistically significant based on partial t-testing.

TTAABBLLEE  33BB.. Estimates from fitting spline model to DYME data.

Parameter Estimates ± SE

θ1 –2.898 ± 0.302
θ2 –1.457 ± 0.632
θ3 6.327 ± 1.836
ε 228.2 ± 27.0
σ1 0.530 ± 0.467*
σ2 0.468 ± 0.409*
σ3 0.326 ± 0.406*
σ4 1.192 ± 0.261
σ5 3.263 ± 1.275

*: not statistically significant based on partial t-testing.
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test of multiple-variation resulted in a p-value=0.156, which indicates that
the single-variation model may suffice for this data set. For the spline
model, the estimate of the interior knot ε is about 228.2 mg/kg/day
(Table 3B). The LRT results for testing the significance of the spline
model yields a p-value of 0.013, indicating that the spline model may be
the more appropriate model for this data set. Figure 3 is the estimated
dose-response curve of both models fit to the DYME data.

For this study, the threshold estimate 154.5 mg/kg/day is in between
the 3rd and 4th dose groups, apparently due to the proximity in the
responses (approximately 6%, 8%, 11%) at the lowest three dose groups
(0, 62.5, and 125 mg/kg/day, respectively). Also, from Table 1B, the
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FIGURE 3. Estimated dose-response curves to DYME data (circles); solid line is the predicted thresh-
old curve; dashed line is the predicted spline curve.



response variation at these dose groups is very similar, yet the responses
technically increase monotonically. Unlike for the previous study, the esti-
mated threshold and knot for this study are not very close. While esti-
mated threshold is 154.5 mg/kg/day, the estimated knot is 228.2
mg/kg/day. The spline curve (dashed) in Figure 3 indicates no threshold
as the entire curve is monotonic, however slowly increasing below the
knot. Above threshold, both models yield similar response rates, as in the
previous study.

Hormetic Effects

The spline curve in Figure 2 implies that hormetic effects may exist in
addition to threshold effects. Hunt and Bowman (2004) assumed hormet-
ic effects to exist in the DEHP data, but they assumed the effects to exist
in the form of a U-shape curve below the threshold dose level. Their
model included a parameter to account for this effect and inherently
assumed existence of threshold. While the results showed the hormetic
parameter not to be significant, the p-value was much closer to the nomi-
nal 0.05 cutoff for significance than the spline model p-value here. Their
claim was that this insignificance could very well be likely due to an under-
powered study with not enough dose groups as well as not enough litters
within dose groups. They investigated this claim in a simulation study and
illustrated that it did not have enough power to adequately detect hormet-
ic effects. This lack of power is noticeable from Figure 2 as the difference
between the two models is small, while there are too few dose groups
below threshold to detect a difference if there is one.

Several authors have noted the low power for detecting hormesis in
developmental studies and have laid down some guidelines that should be
adhered to when wanting to statistically show hormesis (Sielken and
Stevenson, 1998; Teeguarden et al., 2000). Hunt (2002) took this one step
further and conducted an extensive simulation study to investigate several
factors in the design of developmental studies important in the detection
of hormetic effects. He found that the power of hormetic detection can be
increased without necessarily increasing the number of dose groups by re-
allocating the within-group sample sizes (but maintaining the overall size)
so that the lower groups have larger sizes and spacing the dose groups
properly. Although with the increased power still being low, increasing the
number of dose levels, in conjunction with these other factors, should be
considered to be able to have probability of hormetic detection. 

Doull et al. (1999) indicated that there was biological evidence to sup-
port the existence of threshold effects in studies of DEHP. Hence, there is
some credence to the possibility of its existence in the data. The linear
spline model is very close to the threshold model itself, even though it con-
tains the model as a subset. Essentially, it specifically models the changing
pattern of the data below and above the knot, which is not far from the
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threshold value itself. The hormetic model fit by Hunt and Bowman
(2004) was U-shaped and is much different from either the threshold or
spline models. These facts, along with the fact that the DEHP study is suf-
ficiently underpowered to detect hormesis, as illustrated by Hunt and
Bowman (2004), may indicate that significance of threshold and hormet-
ic effects can be found with more dose groups investigated.

DISCUSSION

We have discussed several threshold dose-response models for appli-
cation to dose-response data from developmental toxicity studies. There
have been various models used, similar in some areas, different in others.
In general, the standard form of the pure threshold dose-response func-
tion has been used in most cases. The models begin to differ in some of
the underlying assumptions about the data itself, e.g., some have assumed
the beta-binomial (Kupper et al., 1986; Chen and Kodell, 1989; Hunt and
Bowman, 2004), while others have made other assumptions about the
data. Schwartz et al. (1995) assumed binomial data with simple overdis-
persion. We assume binomial distribution conditional on random litter
effects, as in Hunt and Rai (2003) and Li and Hunt (2004), but with the
additional assumption of multiple response variation across dose groups.
This assumption has the utility of directly including the effects parameter
into the dose-response model, allowing for simultaneous estimation with
the dose-response parameters, including threshold. 

Certain factors that should be considered when using the model
given by equation (3). One is the number of interior knots k. Technically,
k can be any number, but for the current design of developmental stud-
ies, k=1 seems to suffice. However, if k >1, this immediately adds com-
plexity to the model as now multiple knots must be estimated by the algo-
rithm used and just adding one extra knot, i.e., k=2, can complicate the
estimation process. Another factor is the order m of the B-splines.
Increasing the order, as well as the number of knots, adds parameters to
the model. Hence, one must consider if there is enough data to com-
pensate for these extra parameters. The current design of developmental
studies leans toward small values of both m and k, which is very desirable
to the estimation process.

Whichever method is used or assumed, the method itself inherently
accounts for the litter effects in some fashion, which can be an important
consideration. Litter effects have typically been assumed to just be nui-
sance effects, but proper estimation of these effects can have bearing on
the bias in the estimates of the primary model parameters, including
threshold. Haseman and Kupper (1979) extensively discussed various
models that can be used for data from developmental studies and stressed
the importance of using models that accounted for litter effects and
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noted that models which ignore litter effects may produce considerable
estimation bias in the parameters. Paul (1982) investigated the beta-bino-
mial distribution along with several other versions of the binomial distri-
bution for application to developmental data and found the beta-bino-
mial to perform better in many cases in terms of estimation over the
other binomial models. Chen and Kodell (1989), through LR testing,
found significance of the beta-binomial distribution fit to the data over
the binomial distribution, which ignores intralitter correlation. 

While the beta-binomial distribution has been a commonly used dis-
tribution for data estimation from developmental studies, its primary use
had been in the context of treatment comparison via direct estimation of
the mean responses across dose groups (Williams, 1975; Haseman and
Kupper, 1979; Paul, 1982). It had been expanded to use in dose-response
modeling as well (Kupper et al., 1986; Chen and Kodell, 1989). Yet assum-
ing this model for dose-response can lead to estimation difficulties, espe-
cially since the intralitter correlation parameter(s) are separate from the
dose-response function in the likelihood. Hence, the alternate model
introduced by Hunt and Rai (2003) addresses this issue by directly includ-
ing parameter into dose-response function. Additionally, through simula-
tion studies, they showed that this alternate model and the beta-binomial
model yield similar estimation and bias results when each model is fit to
data generated from the other model. Therefore, the model of Hunt and
Rai (2003) serves as a suitable alternative to the beta-binomial. 

Another consideration that may need to be addressed, in addition to
accounting for litter effects, is in accurately accounting for the diversity in
effects across dose groups. Kupper et al. (1986) conducted simulation
studies to address this issue. For beta-binomial assumed data, they com-
pared the model with constant intralitter correlation to one with differ-
ent correlation across dose groups and found that assuming the constant
correlation model can introduce bias in the estimates of the dose-
response parameters when the underlying model is one of differing cor-
relations across groups. However, they only had 3 dose groups in their
simulations. Hunt and Rai (2008) investigated further and in their simu-
lations, they assumed existence of threshold in the dose-response, used 5
dose groups in each case, and assumed the random litter effects model
instead of the beta-binomial; results between these two models are com-
parable from Hunt and Rai (2003).

From Hunt and Rai (2008), although the general conclusion was the
same as in Kupper et al. (1986), which is the assumption that uniform
dose group variation can lead to bias in parameter estimation, they also
found that this bias occurs when there is a large degree of variation across
dose groups. That is, when the degree of variation or correlation across
groups is small, the model of constant effects can still yield reliable esti-
mates. Assuming different effects across groups necessarily increases the
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number of parameters in the model and as the effects parameters are
generally seen as nuisance parameters, it becomes necessary to deter-
mine if these additional parameters contribute to the model in terms of
reducing bias and leading to statistical significance in results. Assuming
additional parameters means one extra parameter per dose group, which
is not as much of a problem in current settings as the number of groups
is very limited in these studies. However, for general usage, it may be
incumbent to investigate actual models for the effects themselves which
can simultaneously accurately estimate effects and limit bias. 

Finally, the comparison of the threshold dose-response model to the
linear B-spline model yielded quite similar results. The advantage of the
spline approach is in its ability to more accurately estimate the changing
dose-response pattern across the dose range. As opposed to the threshold
model, the spline model instead estimates the interior knot, which does not
necessarily equate to threshold. Other considerations that come into play
when assuming spline approach are assuming higher order spline and
more knots. For developmental studies as constructed and designed cur-
rently, these considerations would seem highly unlikely as there are very
limited number of dose levels and therefore limitation in the change of pat-
tern across the range of doses. Yet if the design of these studies do move
into this direction, then these considerations might become necessary. 

Testing showed that the spline model was not significantly better than
the threshold model, but it was noted that this could very well be due to
an underpowered study. Currently, as the threshold model is the default
model for data from these studies, so it appears to suffice. Even current
approaches do not employ the pure threshold model as described here,
but use confidence limits and safety factors. That is, the current practice
appears to be most focused on determining acceptable levels of exposure
rather than direct estimation of any threshold effects. In particular, if the
experimental design of developmental toxicity studies is modified to allo-
cate more dose groups, and thereby larger sample size, then the models
described here will become even more applicable. There will be a greater
ability to more accurately estimate threshold effects. 
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